Once one can store a page of bits in a hologram, an interface to a computer can be made. The problem arises, however, that storing only one page of bits is not beneficial. Fortunately, the properties of holograms provide a unique solution to this dilemma. Unlike magnetic storage mechanisms that store data on their surface, holographic memories store information throughout their whole volume. After a page of data is recorded in the hologram, a small modification to the source beam before it reenters the hologram will record another page of data in the same volume. This method of storing multiple pages of data in the hologram is called multiplexing. The thicker the volume becomes, the smaller the modifications to the source beam can be.
1. Angular Multiplexing
When a reference beam recreates the source beam, it needs to be at the same angle it was during recording. A very small alteration in this angle will make the regenerated source beam disappear. Harnessing this property, angular multiplexing changes the angle of the source beam by very minuscule amounts after each page of data is recorded. Depending on the sensitivity of the recording material, thousands of pages of data can be stored in the same hologram, at the same point of laser beam entry. Staying away from conventional data access systems that move mechanical matter to obtain data, the angle of entry on the source beam can be deflected by high-frequency sound waves in solids. The elimination of mechanical access methods reduces access times from milliseconds to microseconds.
2. Wavelength Multiplexing
Used mainly in conjunction with other multiplexing methods, wavelength multiplexing alters the wavelength of source and reference beams between recordings. Sending beams to the same point of origin in the recording medium at different wavelengths allows multiple pages of data to be recorded. Due to the small tuning range of lasers, however, this form of multiplexing is limited on its own.
3. Spatial Multiplexing
Spatial multiplexing is the method of changing the point of entry of source and reference beams into the recording medium. This form tends to break away from the non-mechanical paradigm because either the medium or recording beams must be physically moved. Like wavelength multiplexing, this is combined with other forms of multiplexing to maximize the amount of data stored in the holographic volume. Two commonly used forms of spatial multiplexing are peristrophic multiplexing and shift multiplexing.
4. Phase-Encoded Multiplexing
The form of multiplexing farthest away from using mechanical means to record many pages in the same volume of a holograph is called phase-encoded multiplexing. Rather than manipulate the angle of entry of a laser beam or rotate/translate the recording medium, phase-encoded multiplexing changes the phase of individual parts of a reference beam. The main reference beam is split up into many smaller partial beams that
cover the same area as the original reference beam. These smaller beamlets vary by phase that changes the state of the reference beam as a whole. The reference beam intersects the source beam and records the diffraction relative to the different phases of the beamlets. The phase of the beamlets can be changed by non-mechanical means, therefore speeding up access times.
Combining Multiplexing Methods
No single multiplexing method by itself is the best way to pack a hologram full of information. The true power of multiplexing is brought out in the combination of one or more methods. Hybrid wavelength and angular multiplexing systems have been tested and the results are promising. Recent tests have also been formed on spatial multiplexing methods which create a hologram the size of a compact disc, but which hold 500 times more data.
c-pgms.blogspot.com Moved
15 years ago
No comments:
Post a Comment