Desirable parameters described so far include storage capacity, data input and output rates, stability of stored data, and device compactness, all of which must be delivered at a specified (very low) user BER. To a large extent, the possibility of delivering such a system is limited by the properties of the materials available as storage media. The connections between materials properties and system performance are complex, and many tradeoffs are possible in adapting a given material to yield the best results. Here we attempt to outline in a general way the desirable properties for a holographic storage medium and give examples of some promising materials.
Properties of foremost importance for holographic storage media can be broadly characterized as “optical quality,” “recording properties,” and “stability.” These directly affect the data density and capacity that can be achieved, the data rates for input and output, and the BER.
As mentioned above, for highest density at low BER, the imaging of the input data from the SLM to the detector must be nearly perfect, so that each data pixel is read cleanly by the detector. The recording medium itself is part of the imaging system and must exhibit the same high degree of perfection. Furthermore, if the medium is moved to access different areas with the readout beam, this motion must not compromise the imaging performance. Thus, very high standards of optical homogeneity and fabrication must be maintained over the full area of the storage medium. With sufficient materials development effort and care in fabrication, the
necessary optical quality has been achieved for both inorganic photorefractive crystals and organic photopolymer media.
Because holography is a volume storage method, the capacity of a holographic storage system tends to increase as the thickness of the medium increases, since greater thickness implies the ability to store more independent diffraction gratings with higher selectivity in reading out individual data pages without crosstalk from other pages stored in the same volume. For the storage densities necessary to make holography a competitive storage technology, a media thickness of at least a few millimeters is highly desirable. In some cases, particularly for organic materials, it has proven difficult to maintain the necessary optical quality while scaling up the thickness, while in other cases thickness is limited by the physics and chemistry of the recording process.
Much basic research in holographic storage has been performed using photorefractive crystals as storage media. Of these crystals, Fe-doped lithium niobate has been the workhorse. Its sensitivity is sufficient for demonstration purposes, but lacks a factor of 100 for practical application. Since photorefractive are reversible materials, they suggest the possibility of a rewritable holographic storage medium. However, because they are linear and reversible, they are subject to erasure during readout.
Materials for writing permanent volume holograms generally involve irreversible photochemical reactions that are triggered by the bright regions of the optical interference pattern. A photopolymer material, for example, polymerizes in response to optical illumination: material diffuses from darker to brighter regions so that short monomer chains can bind together
to form long molecular chains. And in a so-called direct-write or photochromic material, the illuminated molecules undergo a local change in their absorption or index of refraction, which is driven by photochemistry or photo-induced molecular reconfiguration.
Most erasable holographic materials are inorganic photorefractive crystals doped with transition metals or rare-earth ions. These crystals are often available in centimetre-thick samples and include lithium niobate, strontium barium niobate and barium titanate doped with iron, cerium, praseodymium or manganese.
These materials react to the light and dark regions of an interference pattern by transporting and trapping electrons, which subsequently leads to a local change in the index of refraction. The trapped charge can be rearranged by later illumination, so it is possible to erase recorded holograms and replace them with new ones.